Wind Energy and the Need to Understand Turbulence

Michael Hölling

Experiments done by Thomas Messmer, Julian Jüchter, Jannis Maus, Lars Neuhaus, Frederik Berger, Ingrid Neunaber, ...

> ForWind - Center for Wind Energy Research Institute of Physics University of Oldenburg

Content

- Motivation
- general comments on wind energy
- working conditions for wind turbines
 - need to understand turbulence
- ongoing experimental research at ForWind

Association of research groups and institutes of three universities covering a wide range of wind energy related research topics.

What is ForWind - Center for Wind Energy Research ?

Energy demand worldwide 2020

Source: BP Statistical Review of World Energy, 2021, <u>bp.com</u>

Consumption of fossile fuels - oil

How much oil is consumed every day worldwide?

88 million barrels of oil — per day !!!

One oil truck can fit about 35.000 litres of oil

ForWind Zentrum für Windenergieforschul

Consumption of fossile fuels - oil

14 billion litres of oil correspond to 402.000 filled trucks

402.000 trucks aligned cover a distance of about 7236km

about 11 times the distance from Oldenburg to Nancy

Resource oil

How much oil is left that we can continue at this rate?

Distribution of proved reserves

Source: BP Statistical Review of World Energy, 2021, bp.com

Resource oil

From "Reserves, Resources and Availability of Energy Resources 2014", BGR annual report BGR : Bundesanstalt für Geowissenschaften und Rohstoffe

Content

- Motivation
- general comments on wind energy
- working conditions for wind turbines
 - need to understand turbulence
- ongoing experimental research at ForWind

Kinetic energy

Power from wind

$$E_{wind} = \frac{1}{2}mu^2$$

$$P_{wind} = \dot{E}_{wind}$$
$$= \frac{1}{2} \dot{m} u^2 \text{ with } \dot{m} = \rho \dot{V}$$
$$= \rho A \cdot u$$
$$P_{wind} = \frac{1}{2} \rho A u^3$$

Available power for u = 12 m/s: $P_{wind} = 1kW/m^2$

Wind energy converter (WEC)

$$P_{WEC} = c_P \frac{1}{2} \rho A u^3$$

 $c_P \le 0.59$ **Betz - limit**

Modern wind turbines

$$P_{wind} = 1kW/m^2$$
 at 12m/s radius of about 60m
area about 12000 m²
 $P_{wind} \le 12MW$
 $P_{WEC} = c_p \cdot P_{wind}$
 $c_P \le 0.59$
 $P_{WEC} \approx 5 - 6MW$

World's largest wind turbine

Haliade-X by GE

Source: https://www.eeworldonline.com/heres-what-it-takes-to-build-the-tower-for-the-worlds-most-powerful-offshore-wind-turbine/

Wind energy - a story of success

Worldwide

Total Installed Capacity [MW]

Source: Word Wind Energy association, wwindea.org

14

Wind energy - a story of success

Germany - about 62GW in 2020

New Installed Capacity

Growth Rates

Source: Word Wind Energy association, wwindea.org

France about 18 GW in 2020

Total Installed Capacity 2013-2017 (preliminary data)

New Installed Capacity

Growth Rates

Source: Word Wind Energy association, wwindea.org

Average annual growth in global renewables generation

Wind energy - a story of success

 $\label{eq:lcoef} \text{LCOE} = \frac{\text{sum of costs over lifetime}}{\text{sum of electrical energy produced over lifetime}}$

Source: Fraunhofer ISE, ise.fraunhofer.de

Source: Fraunhofer ISE, ise.fraunhofer.de

Wind energy - environmental impact

One urban legend about wind turbines: if you want to see a pile of dead birds, go visit a turbine.

Wind energy - environmental impact

What about rare earth e.g. Neodymium?

Table 11: Wind power technologies for large turbines and an indication of permanent magnet demand [Jensen, 2012]

Manufacturer	Technology	Generator type and capacity	Permanent magnet amount ^{***}
Siemens Wind Power	Low speed/direct drive	PMSG 6 MW	High
Vestas (MHI Vestas)	Mid speed/geared	PMSG 8 MW	Medium
Enercon*	Low speed/direct drive	EESG ^{**} 7.58 MW	None
Alstom	Low speed/direct drive	PMSG 6 MW	High
Senvion	High speed/geared	DFIG 6.2MW	None
Areva/Gamesa	Mid speed/geared	PMSG 5 MW	Medium

* Over time Enercon has upgraded the capacity of its generator

** EESG – electrically excited synchronous generator

*** Typical permanent magnet amount: High = 650 kg/MW; Medium = 160 kg/MW; Low = 80 kg/MW

Source: http://publications.europa.eu/resource/cellar/7f3762be-aafe-11e6-aab7-01aa75ed71a1.0001.02/DOC_2

Alternative technologies e.g. the EU project EcoSwing

MISSION ACCOMPLISHED: The EU-funded EcoSwing project ended as scheduled on 30.04.2019. EcoSwing successfully aimed at demonstrating world's first superconducting low-cost and lightweight wind turbine drivetrain— on a large-scale commercial wind turbine.

Source: https://ecoswing.eu/project

What to do with the old wind turbines? Recycling ?

Wind energy - environmental impact

Problem: rotor blades with glass and carbon reinforced fibres

Source: https://cleangridalliance.org/blog/137/wind-turbine-recycling-and-disposal

Mechanical Recycling shredding and mixing to thermoplastic

Thermal Recycling burning, leftovers can be reused in concrete, paint and glue

Ongoing research: Project ZEBRA (Zero wastE Blade ReseArch)

Wind energy - environmental impact

What to do with the old wind turbines? Recycling ?

Or other innovative solutions

This image shows a section of turbine blade which shelters bikes in Denmark. Image: Siemens Gamesa via Twitter

Michael Hölling, Mines Nancy 2022

slide 23

Content

- Motivation
- general comments on wind energy
- working conditions for wind turbines
 - need to understand turbulence
- ongoing experimental research at ForWind

Atmospheric wind field is turbulent on different scales

on small scales

on large scales

Source: <u>youtube.com</u>, American beauty (1999)

Source: youtube.com

These are the working conditions for wind turbines

Problem: standard characterisation of wind fields and turbine response (power output) is based on 10-minute averaged data

Dynamics of 10-minute averaged data

Michael Hölling, Mines Nancy 2022

slide 27

I Hz data within 10-minute windows reveals highly dynamical system on short time scales

Fast dynamics

Dynamics within 10 minute window at 1Hz

Michael Hölling, Mines Nancy 2022

slide 29

Standard description - turbulence intensity

Dynamics within 10-minute windows are accounted for by turbulence intensity

Michael Hölling, Mines Nancy 2022

slide 30

Temporal events e.g. gusts are not captured by turbulence intensity

Velocity increment:
$$u_{\tau} := u(t + \tau) - u(t)$$

Atmospheric turbulence - increments

 $Prob(u_{\tau} > 6\sigma) \approx 10^{-10}$

 $Prob(u_{\tau} > 6\sigma) \approx 10^{-4}$

Intermittent velocity increments on small and large scales

p(u_τ) [a.u.]

Böttcher et al., Small and Large Scale Fluctuations in Atmospheric Wind Speeds, 2004

Intermittent velocity Intermittent increments of increments power output $P_{\tau} = P(t+\tau) - P(t)$ $u_{\tau} = u(t+\tau) - u(t)$ 1e+01 1e+01 $\tau = 1 \text{ sec}$ $\tau = 8 \text{ sec}$ ±40% power in 8 sec $\tau = 32 \text{ sec}$ $\tau = 128 \text{ sec}$ p(u_r) [shifted] 1e–03 P(t)u(t)Gauss 1e-03 œœ 1e-07 -_____0 1e-07 10 10 -10 20 -10 20 Ó 30 0 u_{\tau} / \sigma_{\tau} P_{τ} / σ_{τ}

Underestimation of turbulence can lead to higher failure rates

Content

- Motivation
- general comments on wind energy
- working conditions for wind turbines
 - need to understand turbulence
- ongoing experimental research at ForWind

Facility WindLab

Wind tunnel with active grid

Big wind tunnel

- 3m x 3m outlet
- open and closed test section
- 30m measurement section
- about 32m/s max. vel. in open
- about 41m/s max. vel. in closed configuration

Model Wind Turbine Oldenburg - MoWiTO

MoWiTO 1.8

II of MoWiTO 0.6

Idea - turbulent flow instead of laminar flow

Generation of reproducible turbulent inflow conditions with defined characteristics, e.g intermittency and gusts

Active grid

Active grid

Generation of realistic inflow conditions

Michael Hölling, Mines Nancy 2022

slide 44

Generation of special inflow conditions

Michael Hölling, Mines Nancy 2022

slide 45

MoWiTO 1.8

Dynamic response of MoWiTO to different inflow conditions and control strategies

MoWiTO 1.8

Velocity measurements in plane of rotation

Wind farms and wakes

MoWiTO 0.6 - wake measurements

Ingrid Neunaber, Dissertation, Oldenburg 2018

MoWiTO 0.6 - wake visualisation

MoWiTO 0.6 - wake visualisation

Michael Hölling, Mines Nancy 2022

slide 51

MoWiTO 0.6 - wake measurements

Wake development of two neighbouring turbines

Wake deficit of two neighbouring turbines

MoWiTO 0.6 - wake measurements

Wake recovery of floating turbines

MoWiTO 0.6 - wake measurements

Wake recovery of floating turbines for surge motion

surge; $\mathbf{f}_{red} = \mathbf{0.12}$; $A^* = 3.1\%$ $U_0 = 4.8 \text{ m/s}$; $C_T \approx 0.7$

surge; $f_{red} = 0.02$; $A^* = 12.1\%$ $U_0 = 4.8 m/s$; $C_T \approx 0.7$

A Bus rotor diamerer

Thank you for you attention

Michael Hölling, Mines Nancy 2022

slide 56