From Thermodynamics to Planning Studies: Multi-scale approaches dedicated to sustainable, smart and low-carbon power systems

Vincent Mazauric

Tuesday, January 23rd, 2018 Ecole des Mines – Nancy

Energy supply Chain (from IEA 2007)

US energy consumption

Industrial, By Major Source

* Electrical system energy losses associated with the generation, transmission, and distribution of energy in the form of electricity.

Property of Schneider Electric - MINES ParisTech - Tuesday, January 23rd, 2018

² Electricity retail sales. Sources: Tables 2.1b-2.1e.

12-

US CO₂ emissions inventory per sector (1)

Émissions directes et indirectes de gaz à effet de serre des États-Unis en 2005, par secteur économique Production d'électricité par source d'énergie

A tight equation towards sustainability

• Demography:

- Rise of energy systems in developing countries
- Refurbishment of existing capabilities in developed countries
- Urban population, from 50% today to 80% in 2100, claims for high density power networks

• The Earth: An isolated chemical system

- Fossil (and fissil) fuels depletion:
 - •Peak oil around 2020
 - •Peak gas around 2030 (excluding shale gas)
 - •Around two centuries for coal or Uranium (GIII)
- Climate change:
 - •Whole electrical generation provides 45% of CO₂ emissions
 - •Global efficiency of the whole electrical system is just 27% (37% for all fuels)
 - •Despite a thermodynamic trend toward reversibility

• The Earth: A fully open energy system

- Domestic energy is 10.000 times smaller than natural energy flows: Solar direct, wind, geothermy, waves and swell...
- But very diluted and intermittent

The energy dilemma is here to stay

The "big picture" for changing Overcome the inertia to walk to our future

Source: OECD (Forthcoming) Green Growth Studies: Energy; World Bank.

Une entreprise globale Une orthodoxie dédiée à l'énergie

Property of Schneider Electric - MINES ParisTech - Tuesday, January 23rd, 2018

Un portefeuille d'activités complet et équilibré

Présence historique

11

Un positionnement unique

Une croissance durable et internationale

€27

Mds de chiffre d'affaires en 2015

41

% du CA réalisé dans les nouvelles économies

160000+

Collaborateurs dans plus de 100 pays

354

Au classement *Fortune 500 (2016)*

4–5% Du chiffre d'affaires consacré à la R&D

Des géographies équilibrées - CA 2012

Des marchés finaux diversifiés - CA 2014

Privilégier le « demand side »

Property of Schneider Electric - MINES ParisTech - Tuesday, January 23rd, 2018

Quelques solutions

• GEMASOLAR (Séville, SP):

• B&D Eolas (Grenoble, FR):

- 17MW
- 185 ha

- 700m² IT
 SE, APC, GDF Suez
- Un site dédié aux solutions dans les marchés clés:

http://www.schneider-electric.com/sites/corporate/en/solutions/solution-overview.page

• 3000 personnes travaillant sur l'EE sur le bassin grenoblois

Quelques programmes d'innovation

 2Mds d'individus n'ont pas accès à l'énergie

Chomes

 Doter chaque bâtiment de solutions d'Efficacité Energétique Active pour atteindre sa meilleure performance énergétique:

- Soutenu par l'ADEME
- Labellisé par CapEnergies et Tenerrdis

Property of Schneider Electric - MINES ParisTech - Tuesday, January 23rd, 2018

- Soutenu par OSEO
- Labellisé par Minalogic et Tenerrdis

From Thermodynamics to Electromagnetism Saving (« private ») electricity

• Thermodynamic description:

- A natural trend toward reversibility
- FEM validation
- Multi-scale issues
- Power management:
 - Stability of the power system

[V. Mazauric, "From thermostatistics to Maxwell's equations: A variational approach of electromagnetism," *IEEE Transactions on Magnetics, vol. 40, pp. 945-948, 2004.*]

Electromagnetic field: Power management

• Couplings:

- magnetic free currents I
- Electric earth potential V₀
- heat tank Joule losses "RI²"

• The utility acts on:

- the mechanical power P_m
- the excitation of the rotor I

A natural tendency towards reversibility

Space- and time- multi-scale decomposition

An natural trend toward reversibility

• Faraday's law is restored by assuming a **reversible** evolution:

→All the energy losses (conversion, distribution, usage) are attainable

→Multi-scale framework with successful issues (material law,..., CAD tools,...)

→Focus until the higher aggregated scale:

➔to address long-term planning issue within a dynamic description

→to inspect reliability conditions dedicated to power transmission

Validation at the design scale

[D. Dupuy, D. Pedreira, D. Verbeke, V. Leconte, P. Wendling, L. Rondot, V. Mazauric, "A magnetodynamic error criterion and an adaptive meshing strategy for eddy current evaluation," *IEEE Transactions on Magnetics*, vol. 52, p. 7402504, 2016.]

Power Conversion device modeling

Basic validation: Thomson effect device 2D-transient, no-magnetic material, no-motion

- Overcome classical error criteria:
 - geometrical
 - flux-density divergence free

• Poynting identity check: $\varepsilon(\Omega) = P_{elec}(\Omega) - P_{Joule}(\Omega) - \frac{dF}{dt}(\Omega) + P_{m}(\Omega)$

$\Delta t = 0.5 \cdot 10^{-6} \mathrm{s}$	Number of Time Step: 2	Number of Time Step : 3 (before remeshing)	Number of Time Step : 3 (after remeshing)
U (V)	3.1.10-1	5.9·10 ⁻¹	5.9.10-1
I (A)	7.3.10-4	2.1.10-3	1.4.10-3
G(J)	-1.61·10 ⁻⁹	-1.34·10 ⁻⁸	-5.89·10 ⁻⁹
$G/I^{2}(J.A^{-2})$	-3.05.10-3	-3.06.10-3	-3.09.10-3
P_m -dG/dt+ P_{elec}		2.5.10-2	9.4·10 ⁻³

Global validation: Induction machine 2D, time-harmonic, magnetic material, motion

Initial mesh: Geometric-based

Mesh after 4 iterations: Refinement at ill-checked nodes

Global validation: Induction machine 2D, time-harmonic, magnetic material, motion

Convergence of the: •Power balance (vanishing slip) •Power functional (Imaginary part) after 2 iterations Convergence of the •Torque vs. Slip curve after 2 iterations

Upper scale

[M. Drouineau, N. Maïzi, and V. Mazauric, "Impacts of intermittent sources on the quality of power supply: The key role of reliability indicators," *Applied Energy, vol. 116, pp. 333-343, 2014.*]

Property of Schneider Electric - MINES ParisTech - Tuesday, January 23rd, 2018

Why and How to keep synchronism? A mechanical analogy... for 3 linked bodies

Mechanical system

Property of Schneider Electric - MINES ParisTech - Tuesday, January 23rd, 2018

N-bodies synchronization dedicated models

• Equipartition of the fluctuation on the iso-energy states [Kosterlitz-Thouless, 1973]

- dimension of the lattice vs. dimension of the spin
- \rightarrow X-Y model in 2D is the marginal dimension with a weak order-disorder transition
- → Soft modes (long-range) induce disordering (desynchronization)
- →Capture the critical behavior thanks to a dedicated lattice model
- Coherence of fully-correlated oscillator population with noise [Kuramoto, 1984]

$$\ddot{\theta}_i + d_i \dot{\theta}_i = \omega_i - \sum_{\langle ij \rangle} \frac{K_{ij}}{N} \sin(\theta_i - \theta_j)$$

• Synchronism is ensured for tight enough binding (admittance matrix):

$$\lambda_2(G) \ge \left\| B^T P_{\text{mech}} \right\|_{\infty} = \max_{\langle i,j \rangle \in G} \left| P_{\text{mech},i} - P_{\text{mech},j} \right|$$

• Disordering factors:

- $N \rightarrow \infty$ (long range disordering modes)
- Intensive use of transmission lines

• Ordering factors:

- Lattice interaction and admittance
- Locally balanced connection point

→ Synchronization is not inconditionnally stable!

Stability and inertia of the power system

• Steady-state mode:

- Electricity consumption = generation
- Frequency and Voltage: constant
- Embedded kinetic and magnetic free-energies are time-invariant

• Transient state:

- Magnetic energy:
 - •spread the fluctuation over the grid
 - Provide stiffness between distributed kinetic reserves
- Kinetic energy: inertia for the power system

Then:

- Primary reserve: get back to a balance between consumption and production
- Secondary reserve: restore frequency and voltage to their set points
- Tertiary reserve: economic optimum

→The greater the indicators, the smaller the frequency and voltage deviations

Reliability indicators

Patent FR 11 61087

 $H_{syn} = \frac{\lambda_2(G)}{\max_{\langle i,j \rangle \in G} \left| P_i - P_j \right|} \ge 1$

 $H_{kin} = \frac{E_{kin}}{Max(S, Peak - S)}$

From Electromagnetism to Energy: Some long-term planning exercises

Cimate-dedicated policies

- Energy Efficiency vs. Clean generation
- Carbon Pricing
- Pledges and INDCs assessment
- Technical issues
 - Intermittency and non-dispatchable sources:
 - Synchronism issue:
 - Reuniese and French cases

time reconciliation space aggregation

Modeling issues

• The TIAM-FR model:

A technical linear optimization model, demand-driven, achieving a technicoeconomic optimum:

- for the reference energy system:
 - •3,000 technologies,
 - •500 commodities;
- subject to a set of relevant technical and environmental constraints
- over a definite horizon, typically longterm (50 years)
- 15 regional areas

Energy efficiency vs. Clean generation:

[V. Mazauric, M. Thiboust, S. Selosse, E. Assoumou, and N. Maïzi, "Arbitrage between Energy Efficiency and Carbon Management in the Industry Sector: An Emerging vs. Developed Country Discrimination," in *International Energy Workshop (IEW 2015), Abu Dhabi, EAU, 2015.*]

Energy efficiency implementation costs

• Model refinement:

 Provide the cost of the next EE step for an already achieved level (demand side)

• The model selects the rate of EE to implement at the demand side:

- for each sector and
- each region

according to the competition with other abatement technologies (CCS...)

EE 0

n0 = 1

EE 1

<u>n1 > 1</u> EE 2 n2 > 1

EE 20 n20 >

Property of Schneider Electric – MINES ParisTech – Tuesday, January 23rd, 2018

Climate scenarios for 2020

	Europe	USA	China
Business As Usual	No constraint		
COP15 – 80%	20% more constrained than COP15		
COP15 – 85%	15% more constrained than COP15		
COP15 – 90%	10% more constrained than COP15		
COP15 – 95%	5% more constrained than COP15		
COP15	20% on emissions (1990)	17% on emissions (2005)	40% on Carbon intensity (2005)
COP15 – 105%	5% less constrained than COP15		
COP15 – 110%	10% less constrained than COP15		
COP15 – 115%	15% less constrained than COP15		
COP15 – 120%	20% less constrained than COP15		
COP15 – 125%	25% less constrained than COP15		
COP15 – 130%	30% less constrained than COP15		

Energy Efficiency implementation in industry

Percentage of EE in the non-metal minerals industry in 2020

Percentage of EE in the pulp and paper industry in 2020

45 BAU 40 Cop15-130% 35 Cop15-125% 30 25 20 15 10 Cop15-95% 5 Cop15-90% 0 Cop15-85% China USA Western Europe Cop15-80%

Percentage of EE in the iron and steel industry in 2020

Cop15-120% Cop15-115% Cop15-110% Cop15-105% Cop15-100%

Percentage of EE in the non ferrous metals industry in 2020

Percentage of EE in other industries in 2020

Energy Efficiency market in industry

No saturation for USA and Europe

Investissements en EE dans l'industrie d'ici 2020 (en millions de dollars)

Carbon pricing...?

[N. Maïzi, A. Didelot, V. Mazauric, E. Assoumou, and S. Selosse, "Impacts of Fossil Fuels Extraction Costs and Carbon Pricing on Energy Efficiency Policies," in *International Energy Workshop (IEW 2016), Cork, Eire, 2016.*]

[N. Maïzi, A. Didelot, V. Mazauric, E. Assoumou, and S. Selosse, "Balancing Energy Efficiency And Fossil Fuel : The Role of Carbon Pricing," *Energy Procedia, 2016.*]

Which tax in order to reach 'factor 2'?

GHG emissions

Electricity prices

Price Electricity Centralized production

How much intermittency in the power mix

[M. Drouineau, E. Assoumou, V. Mazauric, and N. Maïzi, "Increasing shares of intermittent sources in Réunion island: Impacts on the future reliability of power supply," *Renewable and Sustainable Energy Reviews, vol. 46, pp. 120-128, 2015.*]

[S. Bouckaert, V. Mazauric, and N. Maïzi, "Expanding renewable energy by implementing Demand Response," *Energy Procedia, vol. 61, pp. 1844-1847, 2014.*]

[S. Bouckaert, P. Wang, V. Mazauric, and N. Maïzi, "Expanding renewable energy by implementing Dynamic support through storage technologies," *Energy Procedia, vol. 61, pp. 2000-2003, 2014.*]

[N. Maïzi, V. Mazauric, E. Assoumou, S. Bouckaert, V. Krakpowski, X. Li, and P. Wang, "Maximaizing intermittency in 100% renewable and reliable power systems: A holistic approach applied to Reunion Island in 2030," *Applied Energy, 2017.*]

Interest of Reunion Island

 Electricity generation: 100% from renewables for 2030

• Available solutions:

- Thermal power plants using bagass or wood
- Intermittent renewable energy
- Flexibility:
 - •Demand Response
 - Storage

TIMES - Reunion 100% REN scenario

Property of Schneider Electric - MINES ParisTech - Tuesday, January 23rd, 2018

Electricity generation mix for a typical day during summer 2030

700

→Ensure only system adequacy
→How to derive reliable power systems within prospective studies?

[From :M. Drouineau, N. Maïzi, and V. Mazauric, "Impacts of intermittent sources on the quality of power supply: The key role of reliability indicators," Applied Energy, vol. 116, pp. 333-343, 2014.]

Dynamic storage technologies implementation

	PVOCE30	PVOCE-FIASTG
Installed Power (MW)	1576	1673
Storage Power (MW)	123	23 (=0.4 in 2020+22.6 in 2025)
Objective function (M euro)	1982 + Storage	2016

100% renewable energy scenario in 2030

Synchronism indicator:

- strengthened grid (solid lines)
- current grid (dashed lines)

dispersed energy (summer) provides a more resilient grid

Kinetic indicator:

• 2030 vs. 2008 level

Property of Schneider Electric - MINES ParisTech - Tuesday, January 23rd, 2018

Hours of the day

Power generation mix in 2030

Typical Day (2030)

Yearly generation transition

French case issues

Nuclear phase out

Decarbonation of the power system with REN

[N. Maïzi, E. Assoumou. "Future prospects for nuclear power in France". *Applied Energy*, 2014, 136, pp.849-859.]

[V. Krakowski, E. Assoumou, V. Mazauric, N. Maïzi, "Feasible path toward 40–100% renewable energy shares for power supply in France by 2050: A prospective analysis", *Applied Energy*, 2016, 171, pp. 501-522.]

[G. S. Seck, V. Krakowski, E. Assoumou, N. Maïzi, V. Mazauric, "Reliability-constrained scenarios with high shares of renewables for the power sector in 2050", *Energy Procedia*, 2018.]

Yearly generation

Installed capacity

Installed capacity in 2050 (MW)

Share of intermittency for: Capacity and Power vs. %REN generation

Sensitivity analysis to some critical issues

Regional mix (under progress)

BAU generation No fiability constraint 100% renewables No fiability constraint

Towards an embedded and optimized/smart energy system

- Room, floor and residential level:
 - Load : devices
 - Room control: Decrease demand without jepardize comfort and productivity

• Building level:

- Loads: rooms, floors...
- Building control: Optimize commodities, i.e. « smart grid ready »

Campus and District levels (smart district)

- Loads: Buildings and small plants
- **District control:** leverage Renewables and flexibilities to perform peak shaving, promote self-generation and define a new technico-economic optimum.

optimised, positive energy

comfort

productivity

efficient

flexible

P : Generation R : Renewable S : Storage D : Distribution

R

S

Ρ

• Cities and State (smart cities)

- Loads : districts and intensive plants
- **City control**: Lower CO2 emissions, increase resiliency, expand to other commodities and public services (mobility, health, security, water, data...)

• Whole power system (smart grid):

- **Loads**: cities, states...
- Ensure safety, stability and grid availability: balancing demand/suply, incenzitive demand response, manage ancillary services.

stable well balanced available

autonomous

résilient

		centralized	decentralized
Relaxation time			
under	syncronism	Except "copper plate"	If well balanced
load or generation	kinetic reserve	few s	lower
fluctuation	magnetic linkage (transmission)	10 ms	lower
	elasticity of generation	few mn	no (AC/DC static converters)
	spinning reserve	few mn	lower
Losses			
	self-consumption		
	auto-control		monitoring and data processing
	T&D losses		
	reliability losses		???
Investment			
	sizing of capacity	global peak	Σ (local deficits)
	backup/storage	discard peak	balance intermittency
	demand response	discard peak	minimize local deficit
	generation & transmission	10.000 BillionUS\$ (WEO, IEA 2003)	???
Systemic risk		weak but global	important but isolated
Emissions/Depletion			
	hydro	large	
	renewables	farms	
	fossils		back-up
	nuclear		no (or small units)

Property of Schneider Electric – MINES ParisTech – Tuesday, January 23rd, 2018

Conclusion

- Grid synchronism is a critical issue to correctly aggregate kinetic energy and face to fluctuations
- Due to local generation, µ-grid and decentralized concepts allow reducing congestion throughout the grid and improving the synchronism indicator at the transmission scale
- However:
 - the constraint on synchronism is rejected on the distribution network (with lower voltage and extra losses) inducing investment at this stage
 - constraining kinetic energy to the 2008 level over the prospective horizon induces extra-costs to enforce reliability (compared to BAU)
 - the solar appears in the 3rd rank after wind and hydro (no self-consumption);
- To summarize:
 - µ-grid concept is compliant with energy transition by fixing the first step of the grid transformation towards decarbonation.
 - Capital intensity needed to achieve a decarbonation compliant with COP21 pledges (>80%) is not realistic so far without nuclear generation

Conclusion

Many R&D fields to explore:

- Expand and maintain technical fields:
 - •Thermodynamics, operational research, electrical engineering, CAE...
- Assess continuously environmental impacts:
 - •Banish: ceteris paribus, techno-push, rebound effect...
- From Research to Innovation:
 - Risk-assessment, regional analysis...
 - Customers and Business stakeholders (ICC, IBF, WEC...)
 - Policy makers (UNEP, UNFCCC...)
- Sharing knowledge:
 - Publications (bifurcation not BAU)
 - patenting and IP strategy
- Business implementation

Make the most of your energy^s™

Property of Schneider Electric – MINES ParisTech – Tuesday, January 23rd, 2018