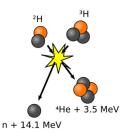
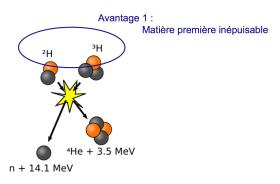
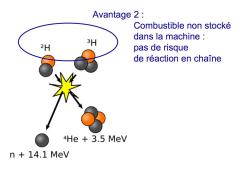
Fusion par confinement magnétique : défis liés aux instabilités et à la turbulence plasma

Etienne GRAVIER

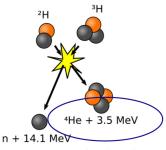

Conférences Énergie / Plasmas - École des Mines - 6 février 2018


Équipe Plasmas Chauds Institut Jean Lamour Université de Lorraine - CNRS - UMR 7198

- Introduction
 - La fusion
 - ITER
- Physique des plasmas
 - Critère de Lawson
 - Confinement magnétique
 - Collisions coulombiennes Transport collisionnel
 - Transport anormal
- Aspect expérimental
 - Les grands dispositifs expérimentaux
 - Les machines de laboratoire
- Simulation
 - Le modèle cinétique
 - Le modèle fluide
- Conclusion

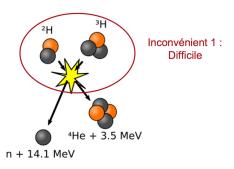

- 1 Introduction
 - La fusion
 - ITER
- 2 Physique des plasmas
- 3 Aspect expérimenta
- Simulation
- Conclusion

Réaction de fusion

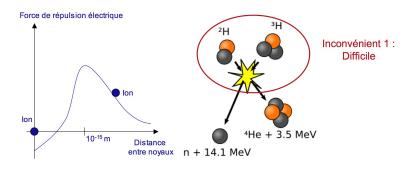


Réaction de fusion

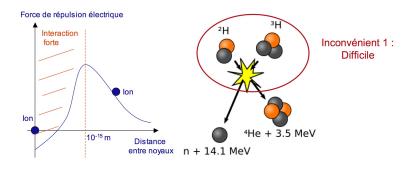
Réaction de fusion


Fusion de deux isotopes de l'hydrogène : le deutérium et le tritium

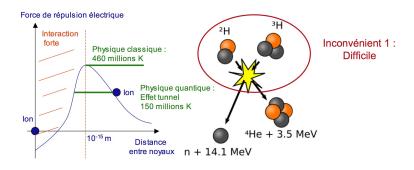
Avantage 3:


Peu de déchets radioactifs « Nucléaire écologique »

Réaction de fusion


Introduction

Réaction de fusion



Introduction

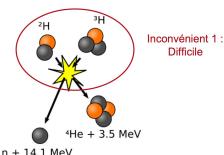
Réaction de fusion

Réaction de fusion

Réaction de fusion

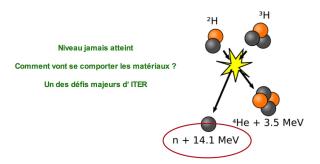
Fusion de deux isotopes de l'hydrogène : le deutérium et le tritium

150 millions K


Gaz ionisé = Plasma

Conduit l'électricité

Réaction particulière aux OEM

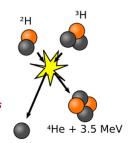

Comportement « collectif »

Milieu facilement instable

Réaction de fusion

Fusion de deux isotopes de l'hydrogène : le deutérium et le tritium

Inconvénient 2 : Neutrons très énergétiques


Réaction de fusion

Fusion de deux isotopes de l'hydrogène : le deutérium et le tritium

Inconvénient 3 : « politique »

1960 : Fusion = source d'énergie pour les années 2000 2000 : Fusion = source d'énergie pour les années 2050

Solution nucléaire, et ne répond pas aux besoins à court terme

n + 14.1 MeV

 Introduction
 Physique des plasmas
 Aspect expérimental
 Simulation
 Conclusion

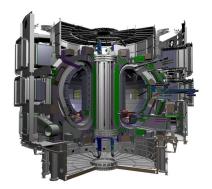
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O

ITER

JET : Joint European Torus

Culham (près d'Oxford) - Machine actuelle la plus performante

Record actuel:


 $P_{fusion} = 16$ MW, $P_{heating} = 25$ MW, pendant 1 s

Introduction Physique des plasmas Aspect expérimental Simulation Conclusio

ITER

ITER: International Thermonuclear Experimental Reactor

Prototype de réacteur nucléaire à fusion - Actuellement en construction à Cadarache - Pas de production d'électricité

ITER

ITER: International Thermonuclear Experimental Reactor

Prototype de réacteur nucléaire à fusion - Actuellement en construction à Cadarache - Pas de production d'électricité

petit rayon du plasma : 2 m (JET x 2)

Physique des plasmas

- grand rayon du plasma : 6,20 m (JET x 2)
- hauteur du plasma : $6,80 \text{ m} \text{ (JET} \times 4)$
- volume plasma : 840 m³ (JET x 8,5)
- courant plasma : 15 MA (JET x 3)
- champ magnétique toroïdal : 5,3 T (JET x 1,5)

ITER: Objectif

 $P_{fusion} = 500 \text{ MW}, P_{heating} = 50 \text{ MW}, \text{ pendant } 400 \text{ s}$

▶ 1985 : Sommet de Genève, Mikhaïl Gorbatchev (URSS) et Ronald Reagan (Etats-Unis)

- ▶ 1985 : Sommet de Genève, Mikhaïl Gorbatchev (URSS) et Ronald Reagan (Etats-Unis)
- ▶ 1986 : + Europe, Canada, Japon
- 1998 : Phase d'étude terminée Retrait des Etats-Unis (réussite incertaine + coût)
- ▶ 2001 : Nouveau projet (moins ambitieux)
- ▶ 2002 : + Chine , Corée du Sud
- ▶ 2003 : Retour des Etats-Unis
- ▶ 2005 : Le site de Cadarache est choisi (choix parmi Canada, Espagne, France, Japon) + Inde

- ▶ 2007 : Début construction (2010)
- ▶ 2015 : Premier plasma (2025)
- ▶ 2039 : Démantèlement d'ITER
- ▶ 2040 : DEMO (production d'électricité)
- ▶ 2050 : Exploitation industrielle
- Coût : 10 milliards € (20 milliards €)

Construction ITER / Janvier 2012 / Iter.org

Construction ITER / Plots parasismiques / Février 2012 / Iter.org

Construction ITER / Avril 2013 / Iter.org

ITER

Construction ITER / Avril 2014 / Iter.org

Construction ITER / Avril 2015 / Iter.org

Construction ITER / Avril 2016 / Iter.org

Construction ITER / Avril 2016 / Iter.org

ITE

Chantier ITER / Avril 2017 / Iter.org

ITER

Chantier ITER / Avril 2017 / Iter.org

DEMO et exploitation industrielle :

- ► La fusion produit un neutron qui transporte 80% de l'énergie produite hors du plasma (particule non chargée, insensible au champ magnétique)
- Neutrons absorbés par les parois du réacteur ⇒ Chaleur transférée aux parois
- Parois refroidies ⇒ chaleur utilisée pour produire de la vapeur ⇒ turbines et alternateurs ⇒ électricité
- Les neutrons serviront aussi à transformer le lithium en tritium

- Introduction
- Physique des plasmasCritère de Lawson
 - Confinement magnétique
 - Collisions coulombiennes Transport collisionnel
 - Transport anormal
- 3 Aspect expérimental
- 4 Simulation
- Conclusion

Plasma

Gaz constitué de particules chargées = gaz ionisé

lci : complètement ionisé

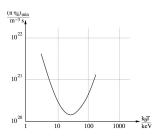
lons et électrons : ne, Te, ni, Ti

Neutralité globale : autant d'ions que d'électrons

Densité plasma : $n = n_e = n_i$

Pour un plasma de tokamak : $T_e \simeq T_i$

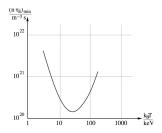
Critère de Lawson


Le critère de Lawson : condition d'ignition

$$nk_BT au_E > 3 imes 10^{21}~{
m keV~s~m}^{-3}$$

Critère de Lawson

Le critère de Lawson : condition d'ignition


$$nk_B T au_E > 3 imes 10^{21} \ \mathrm{keV \ s \ m^{-3}}$$

Critère de Lawson

Le critère de Lawson : condition d'ignition

$$\textit{nk}_{\textit{B}}\,\textit{T}\,\tau_{\textit{E}} > 3 \times 10^{21}~\text{keV s m}^{-3}$$

Fusion magnétique :

$$\begin{array}{c} \Rightarrow \ T \simeq 15 keV \\ n \simeq 10^{20} \ {\rm m}^{-3} \ ({\rm disruption}) \\ \Rightarrow \tau_E = 2 \ {\rm s} \end{array}$$

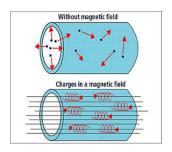
Confinement magnétique

Temps de confinement τ_E :

Temps caractéristique de décroissance de l'énergie du plasma si toutes les sources étaient coupées.

Confinement magnétique :

Une particule chargée s'enroule autour de la ligne de champ magnétique.


Mouvement cyclotron:

$$m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B}$$

Confinement magnétique :

Mouvement cyclotron, de caractéristiques :

- la pulsation (ou fréquence) cyclotron $\omega_c = \frac{qB}{m}$
- ▶ le rayon de Larmor $r_L \simeq \frac{v_{T_i}}{\omega_C}$

www.jet.efda.org

Confinement magnétique

Première idée : machine cylindrique avec champ magnétique axial

Etienne GRAVIER

Première idée : machine cylindrique avec champ magnétique axial

Fusion par confinement magnétique :

$$au_E = 2 \text{ s}, T_i = 15 \text{ keV}$$

$$\Rightarrow v_{T_i} = 8.5 \times 10^5 \text{ m s}^{-1}$$

⇒ Distance parcourue par un ion en 2 s : 1700 km

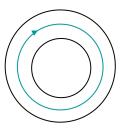
Fusion par confinement magnétique :

$$\tau_E = 2 \text{ s. } T_i = 15 \text{ keV}$$

$$\Rightarrow v_{T_i} = 8.5 \times 10^5 \text{ m s}^{-1}$$

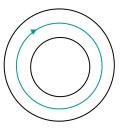
⇒ Distance parcourue par un ion en 2 s : 1700 km

⇒ Conditions aux extrémités ⇒ Machine trop grande!



Confinement magnétique

Deuxième idée : machine toroïdale, les lignes de champ ne "heurtent" pas les parois


Etienne GRAVIER

Deuxième idée : machine toroïdale, les lignes de champ ne "heurtent" pas les parois

vue de dessus

Deuxième idée : machine toroïdale, les lignes de champ ne "heurtent" pas les parois

vue de dessus

Mais il reste un problème : la courbure des lignes de champ

Confinement magnétique

Force supplémentaire sur le mouvement de la particule chargée :

$$m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B} + \vec{F}$$

Force supplémentaire sur le mouvement de la particule chargée :

$$m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B} + \vec{F}$$

Il apparaît une dérive perpendiculaire aux lignes de champ magnétique :

$$\vec{v}_d = \frac{\vec{F} \times \vec{B}}{qB^2}$$

Force supplémentaire sur le mouvement de la particule chargée :

$$m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B} + \vec{F}$$

Il apparaît une dérive perpendiculaire aux lignes de champ magnétique :

$$\vec{v}_d = \frac{\vec{F} \times \vec{B}}{qB^2}$$

Par exemple, si $\vec{F} = q\vec{E}$:

$$\vec{v}_d = \frac{\vec{E} \times \vec{B}}{B^2}$$

Force supplémentaire sur le mouvement de la particule chargée :

$$m\frac{d\vec{v}}{dt} = q\vec{v} \times \vec{B} + \vec{F}$$

Il apparaît une dérive perpendiculaire aux lignes de champ magnétique :

$$\vec{v}_d = \frac{\vec{F} \times \vec{B}}{qB^2}$$

Par exemple, si $\vec{F} = q\vec{E}$:

$$\vec{v}_d = \frac{\vec{E} \times \vec{B}}{B^2}$$

Ou encore, si $\vec{F} = m\vec{g}$:

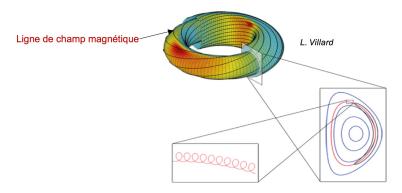
$$\vec{v}_d = \frac{m\vec{g} \times \vec{B}}{qB^2}$$

Courbure, force centrifuge : $g=v_\parallel^2/R_c$

$$\vec{F}_{R_c} = m v_\parallel^2 \frac{\vec{R}_c}{R_c^2}$$

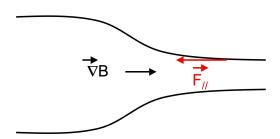
$$ec{v}_{d_{Rc}} = rac{mv_\parallel^2}{qR_c^2B^2}ec{R}_c imes ec{B}$$

Cette dérive déconfine les particules

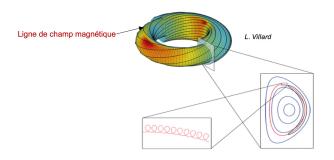


Confinement magnétique

Champ magnétique toroïdal + champ magnétique poloïdal


Etienne GRAVIER

Champ magnétique toroïdal + champ magnétique poloïdal


Aussi, force suivant la direction du champ magnétique :

$$F_{\parallel} = -\mu \nabla_{\parallel} B$$

Notion de miroir magnétique : particules piégées

Confinement magnétique

Dans un tokamak : côté faible champ et côté fort champ

Notion de miroir magnétique : particules piégées

Confinement magnétique

Remarque : comparaison périodes Tokamak / Ceintures de Van Allen

	Tokamak	Van Allen
Mouvement cyclotron	$10^{-8} \; { m s}$	1 ms
Mouvement de rebond	$10^{-5} { m s}$	1 s
Mouvement de précession	$10^{-2} { m s}$	1000 s

TOKAMAK:

Igor Tamm et Andreï Sakharov

Vient de **to**roïdalnaïa **ka**mera **ma**gnitnymi **ka**tushkami : chambre toroïdale avec bobines magnétiques

Années 1960 : performances obtenues dans les tokamaks supérieures à celles obtenues dans les autres machines

Igor Tamm - (1895/1971)

Andreï Sakharov - (1921/1989)

ntroduction **Physique des plasmas** Aspect expérimental Simulation Conclusio O O O O

Confinement magnétique

Malgré ces efforts : TRANSPORT

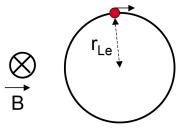
Transport de matière et de chaleur perpendiculaire aux lignes de champ

Confinement magnétique

Malgré ces efforts : TRANSPORT

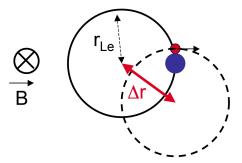
Transport de matière et de chaleur perpendiculaire aux lignes de champ

 \Rightarrow D'où vient ce transport?


Collisions coulombiennes - Transport collisionnel

Principe du transport collisionnel

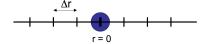
Etienne GRAVIER


Principe du transport collisionnel

Collision électron-ion

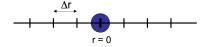
Principe du transport collisionnel

Collision électron-ion

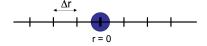

Marche aléatoire

$$D = \frac{(\Delta r)^2}{2\Delta t}$$

Etienne GRAVIER


Marche aléatoire

$$D = \frac{(\Delta r)^2}{2\Delta t}$$


Marche aléatoire

$$D = \frac{(\Delta r)^2}{2\Delta t}$$

Marche aléatoire

$$D = \frac{(\Delta r)^2}{2\Delta t}$$

Equation de diffusion :

$$\frac{\partial n}{\partial t} = D\nabla^2 n$$

Marche aléatoire

$$D = \frac{(\Delta r)^2}{2\Delta t}$$

Etienne GRAVIER

Marche aléatoire

$$D = \frac{(\Delta r)^2}{2\Delta t}$$

Ici,
$$(\Delta r)^2 = 2r_{L_E}^2$$
 et $\Delta t = \frac{1}{\nu_{ei}}$

Marche aléatoire

$$D = \frac{(\Delta r)^2}{2\Delta t}$$

Ici,
$$(\Delta r)^2 = 2r_{L_E}^2$$
 et $\Delta t = \frac{1}{\nu_{ei}}$

d'où

$$D = \frac{k_B T_e \nu_{ei}}{m \omega_C^2} = \frac{m k_B T_e \nu_{ei}}{e^2 B^2}$$

Marche aléatoire

$$D = \frac{(\Delta r)^2}{2\Delta t}$$

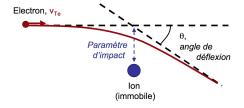
Ici,
$$(\Delta r)^2 = 2r_{L_E}^2$$
 et $\Delta t = \frac{1}{\nu_{ei}}$

d'où

$$D = \frac{k_B T_e \nu_{ei}}{m\omega_C^2} = \frac{mk_B T_e \nu_{ei}}{e^2 B^2}$$

Le champ magnétique confine et les collisions déconfinent le plasma.

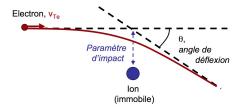
Collisions coulombiennes - Transport collisionnel


Calcul de la fréquence de collision u_{ei}

Ernest Rutherford (1871-1937)

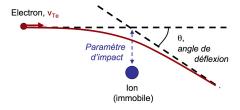
Etienne GRAVIER

Calcul de la fréquence de collision u_{ei}


Ernest Rutherford (1871-1937)

Calcul de la fréquence de collision ν_{ei}

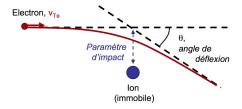
Physique des plasmas


Ernest Rutherford (1871-1937)

$$\nu_{ei} = \frac{4n_i e^4}{\pi \epsilon_0^2 m_e^2 v_{T_e}^3}$$

Calcul de la fréquence de collision ν_{ei}

Ernest Rutherford (1871-1937)


$$\nu_{ei} = \frac{4n_i e^4}{\pi \epsilon_0^2 m_e^2 v_{T_e}^3}$$

Paramètres fusion ITER : $\nu_{ei} \simeq 5000 \text{ s}^{-1}$

Calcul de la fréquence de collision u_{ei}

Physique des plasmas

Ernest Rutherford (1871-1937)

$$\nu_{ei} = \frac{4n_i e^4}{\pi \epsilon_0^2 m_e^2 v_{T_o}^3}$$

Paramètres fusion ITER : $\nu_{ei} \simeq 5000 \text{ s}^{-1}$ \sim Une collision tous les 10 km

Collisions coulombiennes - Transport collisionnel

Transport collisionnel classique / Particules passantes

$$D \simeq 10^{-3} \ {\rm m^2 \ s^{-1}}$$

Collisions coulombiennes - Transport collisionnel

Transport collisionnel classique / Particules passantes

$$D \simeq 10^{-3} \ {\rm m^2 \ s^{-1}}$$

Transport observé expérimentalement

$$D\simeq 1~{\rm m^2~s^{-1}}$$

Transport collisionnel classique / Particules passantes

$$D \simeq 10^{-3} \ {\rm m^2 \ s^{-1}}$$

Transport observé expérimentalement

$$D\simeq 1~\mathrm{m^2~s^{-1}}$$

Transport collisionnel néo-classique / Particules piégées

$$D \simeq 10^{-2} \text{ m}^2 \text{ s}^{-1}$$

Transport collisionnel classique / Particules passantes

$$D \simeq 10^{-3} \text{ m}^2 \text{ s}^{-1}$$

Transport observé expérimentalement

Physique des plasmas

$$D\simeq 1~\mathrm{m^2~s^{-1}}$$

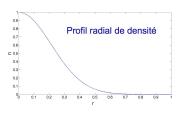
Transport collisionnel *néo-classique* / Particules piégées

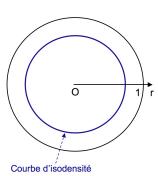
$$D \simeq 10^{-2} \; \mathrm{m^2 \; s^{-1}}$$

Chercher une autre cause pour expliquer le transport!

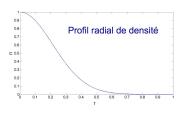
Remarque : Collisions pas forcément utiles pour expliquer le transport observé expérimentalement / Le modèle théorique pourra s'en passer en première approximation.

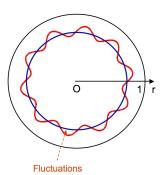
Etienne GRAVIER

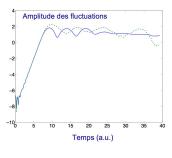


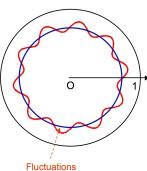

Transport anormal

Deuxième idée pour expliquer le transport observé


Transport lié aux instabilités et à la turbulence = transport anormal

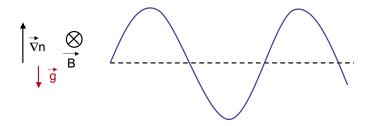

\Rightarrow Qu'est-ce qu'une instabilité?



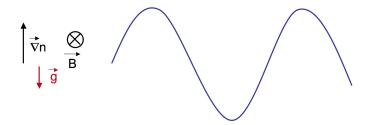


\Rightarrow Qu'est-ce qu'une instabilité?

 \Rightarrow Qu'est-ce qu'une instabilité?

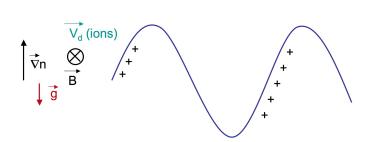

Exemple : instabilité de type Rayleigh-Taylor

Courbe d'isodensité :


Exemple : instabilité de type Rayleigh-Taylor

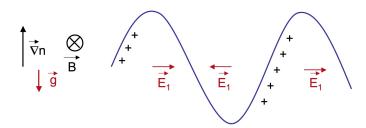
Perturbation de la courbe d'isodensité :

Exemple : instabilité de type Rayleigh-Taylor


Perturbation de la courbe d'isodensité :

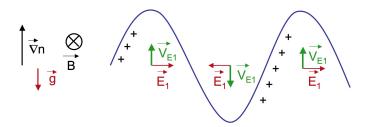
Physique des plasmas

Exemple : instabilité de type Rayleigh-Taylor

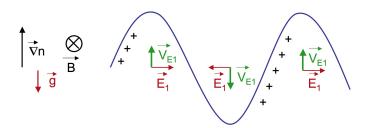

Dérive
$$\vec{v}_d = \frac{m\vec{g} \times \vec{B}}{qB^2}$$
:

Physique des plasmas

Exemple : instabilité de type Rayleigh-Taylor


Génération d'un champ électrique :

Physique des plasmas


Exemple : instabilité de type Rayleigh-Taylor

Nouvelle dérive $\vec{v}_d = \frac{\vec{E} \times \vec{B}}{R^2}$:

Exemple : instabilité de type Rayleigh-Taylor

Nouvelle dérive $\vec{v}_d = \frac{\vec{E} \times \vec{B}}{R^2}$:

L'amplitude de la perturbation augmente ⇒ Instabilité

⇒ Gradients = moteur des instabilités

	Plasma de bord	Plasma de coeur
n (m ⁻³)	10 ¹⁸	10 ²⁰
T (eV)	10 ²	2.10 ⁴

Transport anormal

Transport observé expérimentalement

$$D\simeq 1~{\rm m^2~s^{-1}}$$

Transport anormal

Transport observé expérimentalement

$$D\simeq 1~{\rm m^2~s^{-1}}$$

Transport lié aux instabilités et à la turbulence

$$D\simeq 1~\rm m^2~s^{-1}$$

Transport anormal

Pourquoi une machine de plus en plus grande?

Transport anormal

Pourquoi une machine de plus en plus grande?

⇒ à cause de la turbulence

Surfaces magnétiques = « couches successives de vêtements »

Instabilités et turbulence = « déchirures dans les vêtements »

Pourquoi une machine de plus en plus grande?

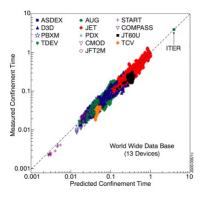
⇒ à cause de la turbulence

Surfaces magnétiques = « couches successives de vêtements »

Instabilités et turbulence = « déchirures dans les vêtements »

Deux façons d'améliorer « l' isolation » :

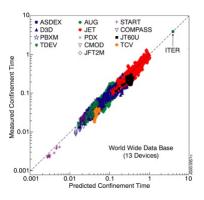
- 1) « Augmenter l'épaisseur des vêtements » = augmenter la taille de la machine
- 2) « Limiter les déchirures » = contrôler ou limiter les instabilités



Transport anormal

Performances ITER estimées par extrapolation d'une loi empirique

Etienne GRAVIER


Performances ITER estimées par extrapolation d'une loi empirique

roduction Physique des plasmas Aspect expérimental Simulation Conclusion

Transport anormal

Performances ITER estimées par extrapolation d'une loi empirique

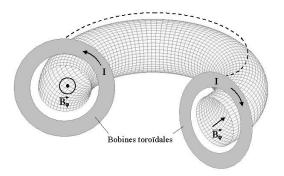

- ⇒ Turbulence au cœur du plasma mal comprise
- ⇒ Obtenir des outils prédictifs fiables

- Introduction
- 2 Physique des plasmas
- Aspect expérimental
 - Les grands dispositifs expérimentaux
 - Les machines de laboratoire
- 4 Simulation
- Conclusion

Aspect expérimental Simulation Conclusion

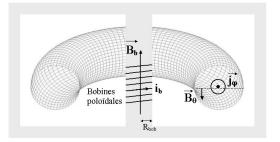
O ○

Stellarator:



W7X IPP Greifswald, Max Planck Institut - Les champs magnétiques poloïdal et toroïdal sont tous les deux créés par les mêmes bobines.

Aspect expérimental Simulation Conclusion


Les grands dispositifs expérimentaux

Tokamak:

Création du champ magnétique toroïdal. Les bobines sont traversées par un courant I constant créant B_{φ} .

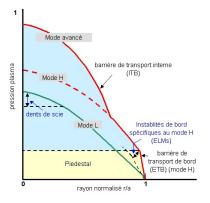
Tokamak:

Création du champ magnétique poloïdal. Les bobines poloïdales sont traversées par un courant i_b qui varie avec le temps. Selon le même principe de fonctionnement qu'un transformateur, une densité de courant j_{φ} va apparaître dans le plasma. Ce courant générera le champ magnétique poloïdal.

ntroduction Physique des plasmas Aspect expérimental Simulation Conclusio

Les grands dispositifs expérimentaux

Tokamak:



Champ magnétique total

Physique des plasmas Aspect expérimental Simulation Conclusion

O O O O

Les grands dispositifs expérimentaux

www.fusion-magnetique.cea.fr

Mode H (découvert par hasard sur ASDEX, 1982)

- ⇒ Temps de confinement x 2
- ⇒ Cisaillement de vitesse, atténue la turbulence

Les machines de laboratoire

Intérêt des machines de laboratoire :

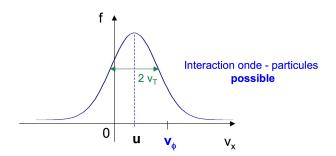
- Plasmas plus accessibles
- ► Conditions d'utilisation plus souples
- Instabilités observées peuvent avoir des points communs avec celles des tokamaks

- Introduction
- Physique des plasmas
- 3 Aspect expérimental
- Simulation
 - Le modèle cinétique
 - Le modèle fluide
- Conclusion

- L'idéal serait de suivre individuellement chaque particule
- Mais $n = 10^{20} \text{ m}^{-3}$
- ► Modélisation *n* corps impossible
- ► Physique statistique

Pour chaque espèce de particules α :

$$\frac{\partial f_{\alpha}}{\partial t} + \vec{v}.\vec{\nabla}_{r}f_{\alpha} + \frac{q_{\alpha}}{m_{\alpha}}(\vec{E} + \vec{v} \times \vec{B}).\vec{\nabla}_{v}f_{\alpha} = 0$$


+ Equations de Maxwell :

$$\vec{\nabla} \times \vec{E} = -\partial_t \vec{B}, \ \vec{\nabla} \times \vec{B} = \mu_0 (\vec{j} + \epsilon_O \partial_t \vec{E}), \ \vec{\nabla} \cdot \vec{B} = 0, \ \vec{\nabla} \cdot \vec{E} = \rho/\epsilon_0$$

avec

$$ho = \sum_{\alpha} q_{\alpha} \int f_{\alpha} d^3 v$$
 et $\vec{j} = \sum_{\alpha} q_{\alpha} \int \vec{v} f_{\alpha} d^3 v$.

Le modèle cinétique

f dépend de 7 variables indépendantes \vec{r} , \vec{v} et t

 \Rightarrow La modélisation reste très difficile

Plasma de cœur d'un tokamak :

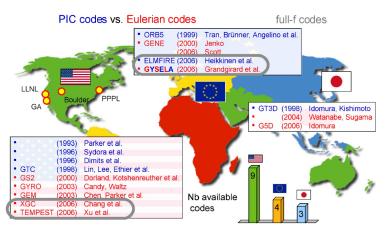
Equation cinétique

 $v_{\phi} \sim v_{\parallel}$ $\frac{df}{dt} = 0 = \frac{\partial f}{\partial t} + \mathbf{v} \cdot \nabla f + \frac{\mathbf{F}}{m} \cdot \frac{\partial f}{\partial \mathbf{v}}$ $\frac{df}{dt} = \left(\frac{\partial f}{\partial t}\right)_{coll}$

Vlasov

Instabilités + interactions onde-particules

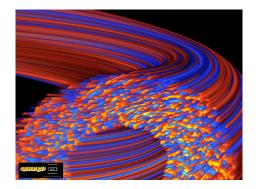
Fokker-Planck


$$\frac{df}{dt} = \left(\frac{\partial f}{\partial t}\right)_{coll}$$

Collisions

+ Instabilités

+ Interactions ondes-particules


Les codes gyrocinétiques :

troduction Physique des plasmas Aspect expérimental **Simulation** Conclusion

Le modèle cinétique

Code GYSELA (CEA Cadarache)

Code hautement parallélisé ($\sim 100~000~coeurs$)

Etienne GRAVIER

Modélisation fluide :

Vlasov \times 1 et intégration sur \vec{v}

$$\frac{\partial n}{\partial t} + \vec{\nabla} \cdot (n\vec{u}) = 0$$

Equation de continuité

Vlasov $\times \vec{v}$ et intégration sur \vec{v}

$$mn\left[\frac{\partial \vec{u}}{\partial t} + (\vec{u}.\vec{\nabla})\vec{u}\right] = nq(\vec{E} + \vec{u} \times \vec{B}) - \vec{\nabla}p$$

Equation fluide du mouvement

Vlasov x v^2 et intégration sur \vec{v}

Equation de transport de l'énergie

etc., équation de fermeture nécessaire.

- Introduction
- 2 Physique des plasmas
- 3 Aspect expérimenta
- 4 Simulation
- Conclusion

Physique de la turbulence encore mal comprise

Exemple : Barrière de transport interne (ITB)

Transport néoclassique?

Plasma idéal : deutérium et tritium

Mais autres espèces :

- production d'hélium
- érosion des composants face au plasma (carbone, tungstène, béryllium)

Impuretés:

- désirables dans le plasma de bord
- ▶ indésirables dans le plasma de coeur